COURSE CODE COURSE NAME CREDIT HOURS

CONTACT HOURS

CE-224 SOIL MECHANICS Theory: 2 Practical: 1 Total: 3 Theory: 32 Practical: 48 Total: 80

PREREQUISITE:

MODE OF TEACHING: Instruction: Practical/ Laboratory Demonstration: week 33%

Two hours of lecture per week 66% Three hours of Lab work per

COURSE DESCRIPTION:

This course provides an elementary introduction to Soil Mechanics and provides the basic mechanics necessary for the detailed study of Geotechnical Engineering. This course aims to provide an understanding of the nature of soils as engineering materials; common soil classification schemes; the importance of water in the soil and the effects of water movement; and the stress-strain-strength response of soils.

COURSE OBJECTIVES:

The objective of this course is to provide the students with an in-depth knowledge and understanding of the various types of soils, their classifications, compaction, permeability and shear strength parameters.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

1	Engineering Knowledge	\checkmark	7	Ethics	
2	Problem Analysis	\checkmark	8	Individual and Collaborative	
3	Design/Development of Solutions			Team	
				Work	
4	Investigation	✓	9	Communication:	
5	Tool Usage		10	Project Management and Finance	
6	The Engineer and the World	✓	11	Lifelong Learning	

COURSE LEARNING OUTCOMES:

1. Upon successful completion of the course, the students will be able to:

S.No	CLO	Domain	Taxonomy Level	PLO
1	Discriminate soils using various soils classification systems and differentiate the soil compaction methods	Cognitive	4	1
2	Analyze problems of seepage through	Cognitive	4	2

	soils and soil stresses			
3	Conduct tests in the laboratory and in the field to determine various properties of the soil for use in geotechnical characterization of soils.	Psychomotor	4	4
4	Show concern for safety guidelines and safety of others in the Lab and field investigations.	Affective	3	6

PRACTICAL APPLICATIONS:

All structures that we see around us are founded on soil. This course aims to provide an understanding of the nature of soils as engineering materials; common soil classification schemes; the importance of water in the soil and the effects of water movement; and the stress-strain-strength response of soils. These all factors combined forms the basis for design of shallow and deep foundations for building, roads, bridges and any other civil engineering structure resting on ground.

TOPICSCOVERED WITH THEIR CONTRIBUTION TO PLOS:

Theory:

Week	Topic Covered	Reading Assignment/ Home Work		CLO No.	Assessment Methodology
1-2	 Introduction Introduction to soil mechanics and geotechnical engineering Significance of geotechnical engineering Soil formation, transportation, sorting, and deposition Types of soil deposits and their properties Soil types, soil structure and clay minerals. 	Textbook# 1 Ch# 2	Assignment 1	1	Assignments,
3-5	 Index and Physical Properties Basic physical and index properties of soil Water content, void ratio, porosity, degree of saturation, air voids, unit weights, specific gravity etc. Phase relationships, and numerical examples Particle size and shapes, sieve Analysis, hydrometer Analysis. Consistency and various states of fine-grained soils 	Textbook# 1 Ch# 2 & 3	Assignment 2 Quiz 1 Quiz 2	1	Quizzes, MSE, ESE

-		r i			
	 Atterberg's limits 				
	 Related numerical examples. 				
4-7	Soil Classification Systems	Textbook#	Assignment		
	 Importance of soil classification 	1 Ch# 5	3		
	 Grain size distribution, gradation 		Quiz 3		
	curves and interpretation				
	Soil classification systems, textural			1	
	classification system, AASHTO soil			•	
	classification system, Unified soil				
	classification system, and				
	description of their subgroups.				
	Related numerical examples				
9	Mid Semester E	xam			
10-12	Compaction of soils	Textbook#	Assignment		
	Compaction of soils	1 Ch# 6	4		Assignments,
	 Fundamentals of compaction 				Quizzes,
	 Standard and modified proctor 				MSE, ESE
	compaction tests				
	Moisture density relationship			1	
	Compaction standards				
	 Factor effecting compaction 				
	 Field control and measurement of 				
	in situ density and field compaction				
	Numerical examples and assignments				-
13-14	Permeability and Seepage	Textbook#	PBL		
	Permeability and Seepage	1 Ch# / &	Assignment		
	• Darcys's law	8	5		
	 Factors affecting permeability 				
	Laboratory and field determination			2, 4	
	of permeability				
	Seepage forces				
	Introduction to flow net				
45.40	Related numerical examples	-	0		-
15-16	In-situ Stresses	I extbook#	Quiz 5		
	Stress condition in soil: effective and	1 Cn# 9		0	
	neutral stresses, stresses in saturates	&10		2	
17-	Seepayes End Somostor E	vam			
18					
Pract	ical:				
			Assessm	ent	Learning
S	Prostical		Methodolo	ogy	Domain/
No.	Practical				Taxonomy
					Level

1	To determine moisture content of soil in laboratory		P3, A2
2	To determine specific gravity of fine-grained soils in the laboratory		P3, A2
3	To determine particle size distribution of soils using sieve and hydrometer analyses.		P3, A2
4	To determine Atterberg's consistency limits of soils	Lab Manual,	P3, A2
5	To determine laboratory compaction characteristics of soils using standard and modified Proctor compaction test procedures	Lab Rubrics, OEL	P3, A2
6	To determine in-place/in-situ/field density of soils		P3, A2
7	To determine permeability of soils using standard constant head and falling head permeability tests		P3, A2

TEXT AND MATERIAL:

Textbook (s)

- 1. Das & Sobhan (2018). Principles of Geotechnical Engineering. 9th.
- 2. Das (2009). Fundamentals of Geotechnical Engineering. 3rd
- 3. Whitlow (2001). Basic soil mechanics, 4th.

References Material:

- 1. Mitchell & Soga (2005). Fundamentals of soil behavior, 3rd.
- 2. Holtz & Kovac (1981) An Introduction to Geotechnical Engineering.
- 3. Whitlow (2001) Basic Soil Mechanic
- 4. Terzaghi (1943) Theoretical Soil Mechanics.

ASSESMENT SYSTEM:

Assessment System for Theory

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

Assessment System for Lab

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assessment/ Viva	20%